
SCOPE /SDK
Version 4.0

Chapter 1: SCOPE Paradigm

CreamWare Datentechnik GmbH
Wilhelm-Ostwald-Strasse 0/K2
53721 Siegburg
Germany

Tel.: (+49) 2241-5958-0

Fax: (+49) 2241-5958-5

Hotline: (+49) 2241-5958-12Main Table of Contents

dee

2 Contents Index

Contents

The SCOPE paradigm ... 3
Abstraction layer .. 4

Algorithm .. 5
Module Attributes .. 7
Vars ... 11
Pads .. 12
Representations ... 12
Signal conversion ... 16
Associating Pads .. 16

Parameters and Presets .. 16

Main Table of Contents

3 Contents Index

This chapter discusses the basic
concepts of SCOPE, the elementary
entities and their relation to each other.

SCOPE has a component oriented
approach. By interconnecting modules
so that they become a circuit you build
more complex modules. By folding
groups of modules you can structure the
processing network and build up
hierarchies . By that you generate
processing units that can be saved and
re-used in a larger context.
Folding results in a hierarchy that shows
the behavior of typical parent-child-
relations. The children inherit attributes
from the parent module.
This garanties high modularity and re-
usibility throughout the environment.

The SCOPE paradigm
Each layer of the hierarchy remains
accessible so that each node and each
connection can be edited at any time.
As there is no restriction in the number
of possible layers a module can have,
each child-node can act as a parent-
module itself.
The resulting structure is that of a tree -
in SCOPE it is also referenced as the
module tree .

upmost layer
with parent
module

subsequent layer
with child-nodes

each child-node can
be a parent module
at the same time.

description of the
abstraction layer of a
simple module/atom.

Module

Module

Module

Module

Module

Module

parent module on the
upmost layer

child-node on the
subsequent layer

child-node
that is also
a parent

module tree

...
...

4 Contents Index

code

variables

- private

- protected

- public

Pads

representations

surface

representation
attributes

circuit

Reference

Dependency

‘HAS’ relation

module
attributes

Var attributes

associated
connections

.....

.....

.....

Abstraction layer
Modules are the fundamental elements
in SCOPE - you could even say that
everything inside SCOPE is a module.
Therefore it is important to have a closer
look to the object called module.

Speaking about a module is more like
speaking of a context - appearance,
complexity, functionality or structure do
not concern. A module is an entity that
is fully operational on its own.
Whereas ‘module’ is a more abstract
definition for an entity, the term atom
always refers to the smallest entity
holding executable code.

The most simple structured module does
not necessarily differ much from an atom
- neither in functionality, nor in
appearance.

To really understand what a module is it
is best to have a close up on it. You could
call it the abstraction layer of a simple
module.

A simple module loads an algorithm that
determines its functionality. Basically an
algorithm is executable code. The
algorithm describes the default state
of the module. The default state is
overloaded when customizing the
module.

Vars are derived from the protected va-
riables and from the public variables of
the algorithm. They pass values from the
modules to the corresponding variables.
Vars are defined by their attributes - i.e.
their values and their properties.
Pads are automatically generated for
Vars from public variables. By default
Vars from protected variables do not
have Pads.
Pads are references to Vars; therefore a
Var can have multiple Pads. Pads can
be connected to Pads of other modules
whereas Vars cannot be accessed
externally. However, you can access
and change their value but you cannot
connect them to other Pads or Vars.

5 Contents Index

The attributes of the Vars also affect the
character of the referencing Pads. The
latters themselves have associated
connections.

Although Pads are a sort of interface to
access variables of the algorithm they
are not always visible throughout the
SCOPE environment. As for the module
itself this depends on the
representation . Currently there are two
representations in use - circuit and
surface . Circuit representation is
suitable for nodes which generate and
process sound. Surface representation
is ideal for control elements like faders,
potentiometers and so on, which are
most likely to be used on sufaces.

A module can have multiple re-
presentations. It does not impose any
problems if a module has a circuit
representation as well as a surface
representation.The representations
have a set of attributes to manage and
optimize them.
Finally a module itself has attributes.
Mostly they set processing preferences
for the module. For more complex
modules these preferences affect the
underlying hierarchy as well - i.e. the
child-nodes of the module. They are
inherited within the module tree.

To understand each of these items
properly they are discussed one by one
in the ongoing consideration.

Algorithm

The algorithm contains the code for the
module which is actually executed. In the
case of a simple module the algorithm
is the object and the module itself is an
instance of this object. It only describes
the default state and is overloaded by

the module itself. This can be down by
customizing the module attributes and
the settings of the Pads.

Most often algorithms generate and
process signals. There are lots of diffe-
rent signals - audio signals, controller
data, MIDI messages, etc. serving
specific tasks. One of the most important
distinctions between the tasks is their
accuracy.
Accordingly it is possible to distinguish
between two groups of processes on
which tasks rely - synchronous and
asynchronous :
Synchronous processes are updated on
every word-clock impulse. This is useful
for time-critical tasks.
In contrast to this, on asynchronous
processes changes occur only
occasionally and need not to be handled
immediately, but merely ‘very soon’,
e.g., within the next millisecond or so.

Thus synchronous processes generate
signals that are more timing accurate
and their impulses have a higher density.
This results in a smoother interpolation
of the signal. Therefore their are
synchronous signals are peferrably used
for audio signals as well as for signals
as well as for signals which modulate
audible audio signals.
Asynchronous signals mainly generate
and process control signals that are
generated on user input. In most cases
their resolution is to coarse for dynamic
modulations. This would result in a
stepwise interpolation which leads to
audible artefacts, so called zippering.

Within these two groups of tasks furt-
her distinctions can be made. Most often
timing is a concern in a signal processing
environment. So a signal with a high
priority has to be processed from an
algorithm that does not introduce any

6 Contents Index

latency. So you can form groups of tasks
according to the priority in timing. This
is also related to the type of the algorithm
which is used to perform them.

Basically there are four different types
of algorithms: DSP-, Scopefx-,
ScopeDLL- and ScopeScript-algorithms.
The Scopefx-algorithms can be
differentiated into VxDs on Win 9x/Me
or WDMs on Win NT/2000/XP
respectively and into DLLs.

SCOPE is a DSP-based development
platform. Basically you can say that the
more timing is a concern the more likely
the algorithm is performed on the DSPs
of the CreamWare hardware.
However digital signal processors
(DSPs) are not always the best choice
for specific processing tasks. Thus there
is the possibility to process synchronous
and asynchronous signals on the CPU
of the host computer. Nevertheless
timing should have a lower priority for
such tasks.
Finally there are surfaces and control
elements. Those only process
asynchronous data. It is sufficient to
update them on request - i.e. on user
input.

Generally speaking you can conclude
that most of the time-critical tasks are
carried out by the DSPs on the
CreamWare hardware. However a series

of control signals (like control elements
on surfaces, the signal routing on the
DSPs) are generated and partially
processed by the host.

The following list gives a brief overview
of the different types of algorithms with
short explainations:

DSP
executed on the CreamWare hardware;
for processing both, synchronous and
asynchronous signals with the highest
priority.

Scopefx
VxD/WDM
executed by the host; for processing
both, synchronous and asynchronous
signals with medium priority.

DLL
executed by the host; for processing
both, synchronous and asynchronous
signals with low priority.

ScopeDLL and ScopeScript
executed by the host; for processing
asynchronous control data and for
managing routings on the DSPs.
Surfaces and control elements are
based on these types.
They are very similar, you can derive
classes from one another. The main
difference is how they are implemented.
ScopeScripts are always written in the
Scope scripting language.
The Scope scripting language is very
similar to Java and must be interpreted
during runtime - in contrast to the C++
implemented ScopeDLLs which may be
used similarly.
ScopeDLLs enables you to combine the
funcitonality of ScopeScript with the
features of C++. Additionally ScopeDLLs
provide access to the API of the
operating system.

7 Contents Index

For further informations on the different
types of algorithms, please consult the
related manuals.

Although DSP-algorithms provide the
most timing accurate solutions it is not
always necessary to implement the
functionality on DSPs. In such cases the
other options help to avoid unnecessary
load on the DSPs.
Additionally the allocation of the DSP-
algorithms on the processors can be
customized. Thereby you can optimize
your project.This ability is accessible via
the module attributes.

Module Attributes

A module has a set of attributes. These
can be divided into two sections:

The first one provides information
on the selected node and on the
underlying algorithm.

The second one enables you to
influence the execution of the DSP-
algorithms.

Especially the second ones are often set
for the module as a whole, and not for
each child-node. Indeed this means
using the module tree with its parent-
child-relation. Thus the settings of the
parent module are inherited by the
children.

The given information on the selected
nodes include:

Name
name of the module. The module
does not always have the same
name as the algorithm or the atom
from which it is derived.

Class
indicates the name of the class of
ScopeScripts and ScopeDLLs.
Regarding these algorithms a
module is an instance of its class.

For ScopeScripts there are
dependencies regarding the name
of the class and the name of the
file. The file has to have the same
name as the class. Additionally the
class name has to reflect the
relative path of the file. The root
directory for ScopeScripts is
always the ‘Script’ folder inside your
SCOPE Installation folder.
If the file of a script class is in a
sub-folder the name of the class -
not that of the file - has to take
this into account: The relative path
is added to the class name and the
path separator is replaced by a ‘@’.
If you look at the class
‘Surfaces@BasicSurface’ the
name of the script-file is
‘BasicSurface.pep’ and it is located
in the ‘Surfaces’ folder inside the
‘Script’ folder. Therefore the relative
path would be ‘Surfaces/
BasicSurface’.

File
filename and the path of the
algorithm.
For DSP-, DLL- and VxD-
algorithms the absolute path and
the filename with extension is
displayed.
For ScopeScripts and ScopeDLLs
the relative path as outlined above
is displayed.

 ·

 ·

 ·

 ·

 ·

8 Contents Index

The second section of the module
attributes influences the placement of the
DSP-algorithms on the digital signal
processors. To understand these
attributes it may be best to first have a
closer look on how the DSP-algorithms
are processed and how they transfer
data.

SCOPE is based on a dedicated DSP
hardware. Not only is one digital signal
processor capable of handling multiple
threads simultaneously but also the
environment is able of using multiple
processors on different boards at the
same time.
This induces different types of
connections and varying transfer times
(latencies) according to the involved
DSPs.The following scheme depicts this:

A processor has a specific amount of
cycles within which he can perform
tasks. As it can also perform different
tasks simultaneously you can load a
specific number of modules onto a sin-
gle DSP. The transfer between two
modules on the same DSP happens
immediately.
Transfers between any two DSPs on the
same board take two samples to
complete. As all the DSPs on a single
board are connected to each other, it is
of no importance which processors are
are involved.

Transfers between DSPs on different
boards happen within two to six samples.
This depends on the involved DSPs and
the available S/TDM connections.
Although these are all rather short times,
for some application this might be
important. These transfers affect the
phase correlation of multi-channel audio
signals if their routings introduce diffe-
rent amounts of latency.

You can assure that the phases stay the
same by watching the routings. The se-
cond part of the module attributes
serves this purpose.

Module attributes are normally made for
the parent and are inherited by the
children.
Although these settings only impact
DSP-atoms each module has them. This
is a logical consequence of the parent-
child-relation within the module tree.
Taking into account that every module
can be a paren, on the upmost layer or
on a subsequent layer, this appears to
be very useful.
Therefore every module has to be able
to pass and/or inherit these options.

It is important to emphasize that settings
made for a module on a lower layer of
the hierarchy overwrite settings that are
inherited from the parent. The child-nodes
of this lower layer module inherit the
settings of their direct parent module.
Therefore it is possible to specify diffe-
rent settings for a sub-tree of the
hierarchy.

Most of the attributes can be inherited.
You can set different values for each
option. Those which can be inherited
have a value <not set>. If it gets
overwritten by a parent it changes to
<inherit value>.

on same DSP

between DSPs
on same board
between DSPs
on different
boards

9 Contents Index

To clarify this consider an examplary
case:
The DSP ID allows you to specify on
which digital signal processor the code
of a module is loaded and executed. For
the exemplary module this flag is set for
the upmost module and for one of its
children.

The individual attributes are:

Single Load
values: yes, no
determines if the DSP/SCOPEfx-
atom is loaded only once. ‘yes’
means it is monophonic, ‘no’
means that it is polyphonic with the
number of voices set for Voices.
Single Load can be set directly in
the code of the underlying
algorithm. In such a case this flag
is has no affect.

Single Load can not be inherited

Voices
values: <not set>, any number
between 0 and x
determines the number of voices
a module uses. Does only take
effect if Single Load is set to ‘no’.
‘0’ removes the module from the
DSPs (not from the SCOPE
environment) to reduce the load on
the processors.
‘-1’ is equivalent to <not set> and
allows the module to inherit the
value from the parent.

The difference between Single Load and
Voices set to ‘1’ might not be obvious. Sin-
gle Load tells the module if it is monophonic
or not. If it is monophonic it only has one
output.
If it is set to polyphonic (Single Load =
no) it has as many active outputs as it
has voices.
So, in a polyphonic circuit a module that
is only loaded once (Single Load = yes)
the output is fed to all active inputs of the
connected polyphonic modules. In
contrast to that if the module has only one
active voice (Single Load = no; Voices =
1) the modules sends its single active
output to the first active input of connected
polyphonic modules. The other active
inputs of the connected polyphonic
modules do not receive a signal.

Board ID
values: <not set>, any number
between 0 and x
determines the DSP-board on
which the module is loaded.
The highest applicable value
depends on the number of DSP
boards you have installed with the
convention that x=’amount’ - 1.
‘-1’ is equivalent to <not set> and
allows the module to inherit the
value from the parent.

!

!

This flag is only set
for two of the modules
of the module tree.
For the others the flag
is not set.

Scope will distribute
the modules
according to their
parent-child-relation
in the module tree. It
is important that the
value set for the
child-node
overwrites the value
inherited from the
parent!

10 Contents Index

DSP ID
values: <not set>, any number
between 0 and x
specifies on which DSP a module
is loaded. Does not necessarily
load the whole module onto the
same DSP (see On Same DSP)!
Use it in conjunction with Board
ID and On Same DSP .
The highest applicable value
depends on the number of DSPs
on the selected board.
‘-1’ is equivalent to <not set> and
allows the module to inherit the
value from the parent.

On Same DSP
values: <not set>, yes, no
determines if a entire module
should be executed on a single
DSP or not. A module can only be
executed on a DSP if the processor
is capable of computing all
necessary cycles simultaneously.
‘-1’ is equivalent to <not set> and
allows the module to inherit the
value from the parent.

Hint
values: <not set>, yes, no
specifies if SCOPE should try to
load an entire module on the same
DSP board. This is more like a
recommendation to the environ-
ment. Whereas the former dis-
cussed options Board ID , DSP ID
and On Same DSP are obligatory
this option is a hint.
Please note that hint should be only
set for the upmost node of a
module/device. If you set this flag
again on a lower level you get a
new, independent hint-group.

DSP Placement
values: unassigned, tuples
provides information on the
placement of a module on the
DSPs. The information is provided
in tuples of the Board ID and the
DSP ID for each voice of the
module.
unassigned indicates that the
current node either not loaded onto
a DSP (Voice setting is ‘0’) or it is
a ScopeScript/ScopeDLL and
therefore not executed on a DSP.
Additionally there are two special
tuples: (0/15) is used for Scopefx
nodes which are also not placed
on a DSP. (-1/-1) indicates that the
node could not be loaded onto a
DSP. This is especially important
for DSP developers.
For modules with children DSP
Placement information on its
module tree is also available.

The module attributes enable you to
customize the distribution of the DSP-
algorithms on the digital signal
processors and therefore handle the
latencies of your multi-channel audio
signals.
Normally modules are distributed
intelligently on the DSP by a smart
algorithm. So the module attributes
should only be set manually, if you
encounter any problems or if you have
special requirements.
You can say that the module attributes
influence the execution of the module in
the environment whereas Vars affect the
processing directly.

11 Contents Index

Vars

Vars are derived from public and
protected variables of the algorithm. The
Vars of the module form the interface
towards the algorithm. The value of the
Var is passed to the corresponding va-
riable of the algorithm.
There are three different types of these
interfaces - the so called I/O-types:
inputs (InPads), outputs (OutPads) and
combined inputs/outputs connectors
(IOPads).
Furthermore a Var has a specific type
and a specific range for which the
received values are valid. Vars can be
of any of these types: int, float, short,
byte, double, char, string, boolean,
object or MIDI.

For a more detailed description of the Var
types consult the programming tutorials.

Most often ints are used. If the range of
a Var has only positive scale then it is
unipolar , if it has both, positive and ne-
gative scale, it is bipolar . The currently
highest value for int is 2147483647 (231-
1; referenced as +Max) and the lowest -
2147483647 (-Max) respectively.
There are a couple of Vars for which the
range is not sufficient to operate properly
- they also necessitate a unit argument.
This is true for frequency, time and gain
Vars. The argument tells the Scope
environment how to interpret the given
value.

Like processes Vars can be
asynchronous or synchronous .
Sychronous Vars are updated on every
word-clock whereas asynchronous ones
are updated ‘very soon’ after changes
did occurred.
All changes made to Vars are passed to
the variables and therefore are reflected
in the output of the process.

Each Var has a set of attributes:

Name
name of the Var

I/O type
InPad, OutPad, IOPad

Variable Type
the variable type, e.g. int, string,
etc.

Size
The size in bytes that is reserved
for the Var. This is not applicable
to all Vars, as strings, for example,
are dynamic.

Range
maximum and minimum values
which define the valid range and if
the Var is unipolar or bipolar

Processing mode
which tells if it is synchronous or
asynchronous

Unit
Information needed to interpret the
Vars values, only for specific Vars

Normally it is not useful or even advisable
to change the arguments of these
attributes, as this may result in
unpredictable behaviour. The Var is
derived from the algorithm and is the
interface for the variables. Changing the
name or even the I/O type of the Var can
render the Var inoperable.

According to these attributes you can
determine which values are valid
arguments for this Var.
They do not only concern the Var itself
but also for all Pads that reference this
Var.

!

!

12 Contents Index

Pads

Vars themselves cannot directly ex-
change data with other Vars as they have
a strong relation to the variables of the
algorithm. Changing the attributes of a
Var means to directly alter this link - in
most cases the link will break.This
results in an inoperable module.
This is the reason why Vars would be
too restricted when being used as
external connectors for modules. As a
consequence the value of a Var can only
be accessed manually.
Therefore Pads serve as external
connectors to modules. They reference
Vars. Thus Var attributes also apply to
them.

Pads are automatically generated forVars
from public variables. You can generate
multiple Pads for every Var. You can as
well create Pads and associate them with
Vars from protected variables.
This is like overwriting the qualifier
(public and protected) of a variable
during run-time, as it will get accessible
by creating a Pad. Analogous Pads
can be deleted.

Pads can be connected to Pads on the
same module or on others on the same
or on a different layer. They can receive
and transmit values depending on the I/
O type of their Var.
Sharing the attributes with the Vars, Pads
have rather associated connections than
attributes. Their names and their I/O
types can be modified freely. Pads are
external connectors and their names and
their I/O types are nothing but
representations of these connectors.
This is a very flexible architecture and
pretty convenient. It only affects their
appearance and not their behavior.

The type of the algorithm, the module
attributes and the Vars determine how
the module behaves in the SCOPE
environment. They specify and influence
how the module is processed and trans-
mit values from or to the modules. Pads
however add a new dimension - the
graphical representation in the
environment.
Also modules themselves have graphical
representations. They augment the ease
of use and indicate the scheduled area
of application.

Representations

It has already been explained that there
are synchronous and asynchronous
processes and signals, as well as that
processes are executed with varying
latency either on the host computer or
on the DSP hardware. These
considerations are related to how a task
is handled rather than what it is for.
However, when speaking about the
representations of modules the
designation of the tasks is more
important than the handling.

There are tasks that generate signals
and others that manipulate them. Certain
modules generate signals dynamically,
others from user input. The first ones
are typically use in circuits, the latters
on the module’s user interface. Although
both generate signals the
representations of these modules are be
different.
Indeed, for circuit components the
representation is rather simple. You have
a box that symbolizes the processing
entity. It has to show the name and the
Pads of the module. The box itself does
not necessarily need a specific size, it
should even resize dynamically

13 Contents Index

according to the number of Pads and the
length of the module’s name.
As opposed to circuit components,
surface elements are used as user
interface. Normally you want the
module’s surface to appear always like
you have designed it. So surface
elements have fixed dimensions. As a
surface element often mimics a real
world element, like a fader or a
potentiometer, its representation is more
complex, too.
Furthermore the representations of the
surface elements check the computer
screen for user input.

Additionally the SCOPE environment
provides the ability to work with diffe-
rent views. There is a Surface view and
a Circuit view. In Surface view you can
edit surfaces and use modules that have
a surface representation. In Circuit view
you edit circuits and use modules with
a circuit representation.
This is very handy because while in
Circuit view you do not have to deal with
surface elements (i.e. modules with a
surface representation) and while in
Surface view not with circuit components
(i.e. modules with a circuit re-
presentation) respectively. Instead you
can concentrate on the principal tasks.

As outlined before, the way a module is
displayed does not depend on the
algorithm or the assigned processes but
on its representation. It can even have a
representation for each view.
However in most cases a module needs
only one representation. Most likely a
module is mainly used in one view. Only
in some situation it might be reasonable
to have more than one representation.
Nevertheless SCOPE gives you the
freedom to fit it to your requirements.

Currently there are two views implement -
Surface view and Circuit view. Furt-
her views can be implemented if needed.

Representations use bitmaps or
animations to visualize the module
graphically. The representation attributes
enable you to optimize the performance
and the graphical layout for each module
or fot the whole surfaces.
A representation of a single node
normally consists of more then one
graphical object - a so called GO. Indeed
you can speak of a hierarchical structure
of graphical objects - the GO tree . The
lower the GO is in the hierarchy the high-
er is its Z-Order . This relation is also
called the Z-Depth.

GOs on the same hierarchy layer have
the same Z-Order. If GOs with the same
Z-Order overlap the recently selected
GO will display on top.
The elements of a GO tree also have a
parent-child-relation to each other. Most
attributes set for the parent are inherited
by the children as long as they are not
set manually for them. This is analogous
to the inheritance of module attributes
in the module tree.

Representations for single modules are
made of GOs and GO trees. A single
modules, however, is a member of a
module tree. For circuit components the
module tree is sufficient to manage their
representations as well. For surface

!

GO tree
Graphical Objects
with the same Z-Order
are displayed with the
same color.

14 Contents Index

elements with their more complex GO
trees, it is not.
The user interface of a module is a
composition of complex GO trees. The
Go trees of the individual surface
elements have to be organised in a
hierarchy that corresponds to the layout
of the user panel.
Surface elements are modules as well
and are therefore part of the module tree.
Although this is a hierarchical structure
it is not sufficient for this purpose.
The primary concern of the module tree
is to generate a hierarchy that organizes
the circuit into a collection of larger
processing entities. This is mainly done
by folding or using other modules as
containers. To be more accurate, the
module tree more or less affects and
takes care of the processes.
So, this is more about how processes
are performed and which ones are
linked.

Although the modules themselves are
already organized in the module tree, it
is also desirable to organize their
graphical representations into larger
containers which structure the
appearance of the surface.
So there is the need of an independent
hierarchical structure with objects that
combine single GOs or even complete
GO trees into groups. As the module tree
handles processes this hierarchy would
handle the visualization.

In SCOPE this hierarchy is called
ViewTree . It organizes the GOs and GO
trees of surface elements in a new
hierarchical structure. The generated
composition is directly related to how
these modules are organized in the
module tree. However it is not identical,
it rather depends on the involved GOs
and GO trees.

The ViewTree is not a classical parent-
child-relationship. There is no
inheritance of attributes within the
ViewTree. Additionally, only GO Groups
can act as parents. Like folders in the
module tree their main concern is to
group individual GOs and GO trees and
to manage the graphical visualization of
their members.

For the moment it is not really necessary
that you understand the concept of the
ViewTree completely. The SCOPE
application computes it in real-time
according to specific rules. Indeed it is not
that important do understand what the
ViewTree is but what it does.
In the following chapters it will be
discussed in more detail what it does.

It is important to understand thoroughly
how the individual attributes affect the
way the representations are displayed.

View ID
Specifies the type of the
representation. ‘Surface’ means
that it is a only visible in Surface
view. ‘Circuit’ means it is only
visible in Circuit view. If ‘None’ it
is not visible at all.

Z-Order
Sets the GO layer for the represen-
tation. GOs with a higher Z-Order
are positioned on top. An argument
‘Normal’ displays the object
according to its position in the GO
tree or ViewTree respectively.
‘Bottom’ will move it to the
background. Numbers specify
higher layers.

Visible
Controls the visibility of the GO/
GO tree. This attribute is inherited
and cannot be overwritten. A child-
GO cannot be visible if its parent
is not.

!

15 Contents Index

Selectable
Specifies if the selected GO can
be selected.

Fixed Z-Order
This flag forces all GOs into a fixed
hierarchy. The hierarchy is
determined by the ViewTree and
then followed by the GO tree.
Generally speaking this flag affects
GOs that are located on the same
level in the GO tree as well as GO
trees that are on the same level in
the module tree.

Draw ClipChildren
This flag affects how a parent GO
(in the GO tree as well as in the
ViewTree) will display its children.
If it is set it forces the parent to
only draw/redraw GOs that are
inside its dimensions. Everything
outside is clipped.
If this flag is not set the parent
looks for its children on the whole
surface to (re-)draw them. This can
be time consuming.

Select ClipChildren
This flag prevents children from
being selected if they are not
positioned within the dimensions of
the GO. Thus the parent does not
need to check inputs from them.

For performance issues these flags (Draw
ClipChildren /Select ClipChildren)
should be set almost every parent.

The last four flags only work for GO Groups
and are related to the ViewTree rather than
to the GO tree . Go Groups are surface
equivalents to the folders in the circuit.
They also serve as parents in the
ViewTree .

Custom horizontal size
Set this to resize a GO Group
manually in horizontal direction. If
this flag is unchecked and the
'ViewTree Group ' flag is set the
parent will resize so that it includes
all its children.

Custom vertical size
Set this flag to resize a GO Group
manually in vertical direction. If this
flag is unchecked and the
ViewTree Group flag is set the
parent will resize so that it includes
all its children.

ViewTree Group
This flag specifies that the GO
Group resizes to include all its
children from the ViewTree. For
performance issues the two custom
size flags should be set and this
flag should be turned off.
This flag should be only used to
calculate the custom size of the
selected parent. After having set
the 'Custom horizontal size ' flag
and the 'Custom vertical size ' flag
it should be turned off again!

Behave like view
This flag determines that the
children are positioned at the upper
left border of the parent.

These options customize the
representation of modules. One of the
most important attributes is the View ID.
It affects the visibility and also the
usability. For surface elements (View ID
set to Surface) Pads are not displayed
as they are not supposed to be visible
on surfaces.
Nevertheless they still exist and can be
connected.

!

!

16 Contents Index

Signal conversion

As pointed out before SCOPE follows a
component oriented approach. The
module is the basic element throughout
this approach. After this brief overview
you should have a basic unterstanding
of a module.
If you recall the structure of a module
(on page 5), until now this discussion
mainly considered the abstraction layer.
However most of the time you actually
work on a ‘normal’ layer.

On a layer you combine multiple modules
to form a pocessing network. This is
done by making connections between the
Pads of the modules.
The connections serve to transmit
signals. The different signals can be
divided into three main groups -
synchronous signals, asynchronous
signals and MIDI messages.
According to these groups the related
Pads have different update rates and dif-
ferent ranges. This means that the
algorithms expect a specific kind of data.

Please keep in minde that a Pad is a
reference to a Var which is transfering the
values to and from the variables of the
algorithm. As a reference a Pad shares
the attributes of the Var.

As you can imagine a unipolar Pad does
not understand a bipolar signal without
any kind of conversion. A conversion
between an asynchronous and a
synchronous signal is other example.

As a consequence there have to be dif-
ferent converters that handle the signal
conversion between different Pads.
Indeed the only conversion that is not
possible is from and to MIDI messages.

Associating Pads

In a consecutive step a processing
network can become a sub-network by
packing the nodes of the circuit into a
new module. This generates a sub-layer
to which the specified modules are
moved. The relation between modules
and layers is iterative as the scheme on
page 5 indicates.
Nevertheless the signals have to be
routed to the Pads of the modules which
are now on a lower layer. To enable these
connections you can generate new Pads
and associate them with Pads of
modules on a lower layer. This is possible
because a Pad is a reference to a Var.

Parameters and Presets
There are a few more attributes that are
especially interesting for more complex
modules or for devices.

A device is the third file type that you
encounter while working with SCOPE -
besides atoms and modules. Keep in
mind that a module is an entity for which
appearance, complexity, functionality
and structure are not characterizing.
More likely it is a composition of one or
more atoms and most often it has a
control surface. Typically it can be re-
used in a larger context.
An atom by itself is simply the smallest
entity hoding executable code.
Devices are complex modules which
have more or less one specific

Module

Asynchronous ·
 ·Synchronous

C

Module

Module

 ·

 ·
 ·
 ·

 · ·
 ·
 ·

C Converter

!

17 Contents Index

functionality. Additionally they have a
surface and presets. So a device can be
considered to be the final state of your
circuit.

If the basic design for a device is finished
you might want to test it with different
controller settings. These can be saved
in presets . Other then for a module which
current state is captured by saving the
module, presets allow you to switch
easily between different settings.

Actually there are two different kinds of
presets in SCOPE - the first ones are
Var oriented and the second ones are
parameter oriented.
Presets save the state of a Var - or in
other word they save the value of the
Var. Doing this for all significant Vars
captures the current state of the device.
However, you might not want to save all
the Vars in presets. The number of
voices, the state of the device’s surface
(open-closed), the position of the surface
on the computer screen. Normally these
states are not saved in presets, because
you do not want them to change each
time you load a new preset.

The Var oriented presets are faster to
set up and might therefore be prefered
as long as the device is not completed
yet. Later on, the parameter presets are
more powerful and handier at the same
time.
Parameters in this context are a
collection of Vars that have been defined
as parameters.

Restore levels
The faster method for prototyping is the
Var oriented implementation. Each Var
has a restore level that enables you to
customize the restore behavior of the
Var. By that you can specifiy for each
Var whether it should be restored in

presets or not. For devices you can even
define that a Var is not restore after
loading.
The default restore level of a Var is that
it restores in presets as well as after
loading. As a consequence a lot of data
has to be saved with the presets and
has to be restored after loading. This
results in hugh preset files and long
loading times.

To avoid this you would have to
customize the restore level of the Vars.
Having to set them manually for each
Var would not be very convenient.
Normally only the values of a minority
of the Vars are of interest for presets.
This means the restore level of the
majority of them needs to be adjusted
to avoid unnecessary overhead.

Parameter presets
Parameter presets work the other way
round. You have to select the Vars you
want to use as parameters. In a se-
cond step you define the preset
parameters from these parameters.

Parameters are saved with the project
files, preset parameters in the presets.

Generally you want to save the current
state of your device with the project. In
preset however you only save a subset
of those parameters - like you would like
to save with the project if a surface of
your device is open or closed which you
do not always want to save with every
preset.
There are a couple of other Var values
which you only want to save with the
project but not in presets.

As the listings of the preset parameters
are a subset of the parameters, you first
define the latters and in a subsequent
step you create a preset parameter list

!

18 Contents Index

from the parameter list. The preset
parameter list determines which Vars are
captured in presets.

Although preset parameters seem to be
more time demanding they allow a much
greater control over the resource usage
and memory consumption of the device.
Compared to the constraints it would
take to achieve the same results with
the Var presets it is still the faster and
the more proper solution.
It also provides a couple of other serious
advantages. Some are listed below:

It becomes possible to exchange
modules within the device without
losing the presets.

Presets can be applied to similar
devices or groups (like channels
for mixer console).

It gets much easier to make preset
lists for individual sections of a
device.

You can easily create preset lists
containing different sets of preset
parameters for one device.

The new automation concept is
based upon the parameter concept.

Parameter context
A parameterized module or device also
has a parameter context which is
another module attribute. A parameter
context contains all the parameters of a
paramterized module or device.
So what is it good for? It may occur
frequently that parts of your circuit are
used more than once in a complex
circuit. It was mentioned that a module
can be re-used in a greater context -
and of course it can be re-used more
than once in a single device.
It was also pointed out that only a
minority of the Vars of the device get
paramterized. Unfortunately, a minority
can still be a huge number. Therefore, it
is a good idea to parameterize the sub-
module before you duplicate it to re-used
it several times.

Having done it this way, you have a
couple of modules having the same
parameters, now. To be able to distin-
guish between them SCOPE needs
some kind of additional information. This
could be an attribute that links each the
parameter to the appropriate instance of
the module.

Exactly this is the functionality of the
parameter context. It puts the
parameters into the context of the
instance. So the parameters can be
addressed independently for each
instance.

 presets
parameters

Vars of
device

defined
parameters

Module

PL

Module with
Parameter List

Module

PL

Module

PL

Module

PL

Module

PL

Module

PL

Module

PL

Parameter
Context

 ·

 ·

 ·

 ·

 ·

19 Contents Index

This was the theory of how the SCOPE
environment works. By now, you should
know have obtained a brief overview
what the individual parts and options are
and how they interact and affect each
other.
In the next chapters you will learn more
about the SCOPE application and the
work-flow. Whilst reading these chapters
you will associate concrete windows,
commands and operations with the
points that were discussed theoretically
in this chapter.

20 Contents Index

Index
A

Abstraction layer 4
Algorithm 4, 5
Associating Pads 16
asynchronous 5, 11, 16
Attributes 7

B

Behave like view 15
bipolar 11
Board ID 9

C

circuit 5
Circuit view 13
Class 7
ClipChildren 15
Custom horizontal size 15
Custom vertical size 15

D

default state 4
device 16
Draw ClipChildren 15
DSP ID 9, 10
DSP Placement 10
DSPs 6

E

elementary entities 3
executable code 4

F

File 7
Fixed Z-Order 15

G

GO 13
GO Groups 15
GO tree 13

H

hierarchies 3
Hint 10

I

I/O type 11, 12
int 11

L

layer 4
levels 17

M

maximum 11
MIDI messages 16

minimum 11
Module Attributes 7
module tree 3

N

Name 7, 11

O

On Same DSP 10

P

Pads 4, 12, 16
paradigm 3
Parameter context 18
Parameter presets 17
Parameters 16
Presets 16
Processing mode 11

R

Range 11
representation 5
Representations 12
Restore levels 17

S

ScopeDLL 6
Scopefx 6
Scopefx-algorithms 6
ScopeScript 6
ScopeScript-algorithms 6
Select ClipChildren 15
Selectable 15
Signal conversion 16
Single Load 9
Size 11
size 15
string 11
surface 5
Surface view 13
synchronous 5, 11, 16

U

unipolar 11
Unit 11

V

Variable Type 11
Vars 4, 11
View ID 14
ViewTree 14
ViewTree Group 15
Visible 14
Voices 9

Z

Z-Order 14

	Contents
	The SCOPE paradigm
	Abstraction layer
	Algorithm
	Module Attributes
	Vars
	Pads
	Representations
	Signal conversion
	Associating Pads

	Parameters and Presets

